465 research outputs found

    On the pion-nucleon coupling constant

    Full text link
    In view of persisting misunderstanding about the determination of the pion-nucleon coupling constants in the Nijmegen multienergy partial-wave analyses of pp, np, and pbar-p scattering data, we present additional information which may clarify several points of discussion. We comment on several recent papers addressing the issue of the pion-nucleon coupling constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0

    Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    Full text link
    We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a BCS-BEC crossover of the Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase transition continuously changes into the BEC-type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local density approximation (LDA). We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase transition temperature Tc, reflecting the change of the dominant particles going from Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are shown to first appear well above Tc. We also discuss the "phase diagram" above Tc as a function of the tunable threshold energy. We introduce a characteristic temperature T* describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA

    Dynamics of quantum quenching for BCS-BEC systems in the shallow BEC regime

    Full text link
    The problem of coupled Fermi-Bose mixtures of an ultracold gas near a narrow Feshbach resonance is approached through the time-dependent and complex Ginzburg-Landau (TDGL) theory. The dynamical system is constructed using Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) path integral methods with the single mode approximation for the composite Bosons, and the equilibrium states are obtained in the BEC regime for adiabatic variations of the Feshbach detuning along the stationary solutions of the dynamical system. Investigations into the rich superfluid dynamics of this system in the shallow BEC regime yields the onset of multiple interference patterns in the dynamics as the system is quenched from the deep-BEC regime. This results in a partial collapse and revival of the coherent matter wave field of the BEC, whose temporal profile is reported.Comment: 24 pages, 7 figures. Submitted to European Journal of Physics Plu

    Resonance effects on the crossover of bosonic to fermionic superfluidity

    Full text link
    Feshbach scattering resonances are being utilized in atomic gases to explore the entire crossover region from a Bose-Einstein Condensation (BEC) of composite bosons to a Bardeen-Cooper-Schrieffer (BCS) of Cooper pairs. Several theoretical descriptions of the crossover have been developed based on an assumption that the fermionic interactions are dependent only on the value of a single microscopic parameter, the scattering length for the interaction of fermion particles. Such a picture is not universal, however, and is only applicable to describe a system with an energetically broad Feshbach resonance. In the more general case in which narrow Feshbach resonances are included in the discussion, one must consider how the energy dependence of the scattering phase shift affects the physical properties of the system. We develop a theoretical framework which allows for a tuning of the scattering phase shift and its energy dependence, whose parameters can be fixed from realistic scattering solutions of the atomic physics. We show that BCS-like nonlocal solutions may build up in conditions of resonance scattering, depending on the effective range of the interactions.Comment: 8 pages,7 figure

    Resonance Superfluidity: Renormalization of Resonance Scattering Theory

    Get PDF
    We derive a theory of superfluidity for a dilute Fermi gas that is valid when scattering resonances are present. The treatment of a resonance in many-body atomic physics requires a novel mean-field approach starting from an unconventional microscopic Hamiltonian. The mean-field equations incorporate the microscopic scattering physics, and the solutions to these equations reproduce the energy-dependent scattering properties. This theory describes the high-TcT_c behavior of the system, and predicts a value of TcT_c which is a significant fraction of the Fermi temperature. It is shown that this novel mean-field approach does not break down for typical experimental circumstances, even at detunings close to resonance. As an example of the application of our theory we investigate the feasibility for achieving superfluidity in an ultracold gas of fermionic 6^6Li.Comment: 15 pages, 10 figure

    The Origins of Bagan: The archaeological landscape of Upper Burma to AD 1300.

    Get PDF
    The archaeological landscape of Upper Burma from the middle of the first millennium BC to the Bagan period in the 13th-14th century AD is a landscape of continuity. Finds of polished stone and bronze artifacts suggest the existence of early metal-using cultures in the Chindwin and Samon River Valleys, and along parts of the Ayeyarwady plain. Increasing technological and settlement complexity in the Samon Valley suggests that a distinctive culture whose agricultural and trade success can be read in the archaeological record of the Late Prehistoric period developed there. The appearance of the early urban "Pyu" system of walled central places during the early first millennium AD seems to have involved a spread of agricultural and management skills and population from the Samon. The leaders of the urban centres adopted Indic symbols and Sanskrit modes of kingship to enhance and extend their authority. The early urban system was subject over time to a range of stresses including siltation of water systems, external disruption and social changes as Buddhist notions of leadership eclipsed Brahmanical ones. The archaeological evidence indicates that a settlement was forming at Bagan during the last centuries of the first millennium AD. By the mid 11th century Bagan began to dominate Upper Burma, and the region began a transition from a system of largely autonomous city states to a centralised kingdom. Inscriptions of the 11th to 13th centuries indicate that as the Bagan Empire expanded it subsumed the agricultural lands that had been developed by the Pyu

    Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton

    Full text link
    Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.

    CP asymmetry in BϕKSB \to \phi K_S in a general two-Higgs-doublet model with fourth-generation quarks

    Full text link
    We discuss the time-dependent CP asymmetry of decay BϕKSB \to \phi K_S in an extension of the Standard Model with both two Higgs doublets and additional fourth-generation quarks. We show that although the Standard Model with two-Higgs-doublet and the Standard model with fourth generation quarks alone are not likely to largely change the effective sin2β\sin 2 \beta from the decay of BϕKSB \to \phi K_S , the model with both additional Higgs doublet and fourth-generation quarks can easily account for the possible large negative value of sin2β\sin 2 \beta without conflicting with other experimental constraints. In this model, additional large CP violating effects may arise from the flavor changing Yukawa interactions between neutral Higgs bosons and the heavy fourth generation down type quark, which can modify the QCD penguin contributions. With the constraints obtained from bssˉsb \to s \bar{s} s processes such as BXsγB \to X_s \gamma and ΔmBs0\Delta m_{B_s^0}, this model can lead to the effective sin2β\sin 2 \beta to be as large as 0.4- 0.4 in the CP asymmetry of BϕKSB \to \phi K_S.Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.

    Energy dependence of Cronin momentum in saturation model for p+Ap+A and A+AA+A collisions

    Full text link
    We calculate s\sqrt{s} dependence of Cronin momentum for p+Ap+A and A+AA+A collisions in saturation model. We show that this dependence is consistent with expectation from formula which was obtained using simple dimentional consideration. This can be used to test validity of saturation model (and distinguish among its variants) and measure xx dependence of saturation momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    corecore